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I. INTRODUCTION

Humans perform fine-grained manipulation by modulating
contact forces through both vision and rich tactile sensing.
However, such low-level contact reasoning remains a funda-
mental challenge in robotics due to sparse and delayed sensory
feedback [15, 12]. Prior tactile imitation learning approaches
have integrated force signals [11], but typically rely on tele-
operation [7] or expensive haptic interfaces [9], and require
visual cues for continuous control [17]. Although glove-based
data collection systems offer scalable alternatives [14], they
often lack force sensing and rely on hand-crafted priors.
Furthermore, methods that passively input tactile signals into
policies [16, 9, 12, 11] struggle to generalize due to embodi-
ment mismatch and require large-scale data to compensate for
increased input complexity.

In this work, we ask: Can we endow robots with ro-
bust, force-aware control by learning efficiently from human
tactile experiences? We present FEELTHEFORCE (FTF), a
framework that enables robots to learn force-aware control
directly from human tactile demonstrations. FTF models
tactile-proprioceptive signals collected via a glove and trains
a transformer-based policy to predict hand trajectories and
contact forces. These are retargeted to robot end-effector
poses, and a low-level PD controller modulates the gripper
to track predicted forces—enabling precise control without
any robot training data. Unlike teleoperation-based methods,
FTF decouples learning from execution and leverages natural
human demonstrations for robust manipulation.

This formulation offers two key advantages: (1) it eliminates
the need for large-scale robot data and expensive haptic
teleoperation and (2) it enables generalization from the human
embodiment to the robot embodiment to solve force-sensitive
tasks robustly. We transfer the learned policy to a Franka Panda
robot with fingertip tactile sensors and evaluate on 5 force-
sensitive manipulation tasks.

In summary, we demonstrate that:

• FTF robustly solves all 5 force-sensitive tasks evaluated
with a 77% success rate where baselines fail showing that
active force prediction and reproduction is more effective
than passive use of multi-modal force inputs.

(a) AnySkin augmented glove,
worn by a human data-
collector. The straightforward
electronics of the sensor
interface both reduces
excessive wiring and also
allows for a bluetooth setting
(right).

(b) Middle: Franka Panda grip-
per with AnySkin on one fin-
gertip, emulating the human
wearable (left). We attach a
plain silicone cap on the other
fingertip.

Fig. 1: Hardware setup for human demonstration and robot
replication using AnySkin [11].

• FTF achieves higher success rates than baselines trained
on robot teleoperation data showing that the natural data
collection enabled by the tactile glove can be effective
for tactile data collection.

• FTF is able to achieve a success rate of 67% on a
task with adversarial disturbances during deployment,
displaying robustness to test-time shifts in the tactile data
distribution.

II. FTF

FTF collects tactile data from human demonstrations using
a low-cost force-sensing glove and learning policies that
predict both actions and desired forces from combined visual
and tactile inputs.

Data Acquisition for Human-to-Robot Force Transfer
FTF enables task execution through natural human move-
ments. During data acquisition, as the human performs the
task, two calibrated RealSense cameras record visual obser-
vations of the hand and environment. At deployment, the
same camera setup monitors a Franka Panda arm in the
same environment. During human data collection, we use a
custom tactile glove inspired by AnySkin [1], featuring 3D-
printed magnetometer-based sensors placed under the thumb
to avoid blocking manipulation. The glove maintains visual
transparency and streams 3D force data via USB at 200 Hz.
We use the norm of the center sensor’s force vector as the



TABLE I: Performance comparison of different gripper action spaces in Human Demo

Task FTF Binary Gripper Continuous Gripper

Place soft bread on plate 13/15 0/15 0/15
Unstack single plastic cup from stack 9/15 0/15 0/15 (2/15 picked 3 cups)
Place egg in pot 13/15 0/15 0/15
Place bag of chips on plate 10/15 0/15 0/15
Twist and lift bottle cap 13/15 11/15 (1/15 break gripper pads) 0/15

TABLE II: Performance comparison of different gripper action spaces in Robot Teleop Demo

Task FTF Binary Gripper Continuous Gripper

Place soft bread on plate 5/15 0/15 3/15
Unstack single plastic cup from stack 4/15 0/15 (6/15 picked 3 cups) 0/15 (2/15 picked 2 cups)
Place egg in pot 0/15 0/15 0/15
Place bag of chips on plate 3/15 0/15 0/15
Twist and lift bottle cap 9/15 12/15 8/15

aggregated force signal. A schematic is shown in Figure 1a.
The force data is transferred to the robot using gripper-
mounted tactile sensors (see Figure 1b).

Embodiment Agnostic Scene Representation We convert
human hand motion into a point-based representation using
Mediapipe [10] to extract 2D keypoints from two calibrated
camera views, which are triangulated into 3D. The robot’s
position is defined by the midpoint of the thumb and index
finger, and orientation is recovered from hand pose changes.
This pose is converted into a fixed set of robot keypoints.
We also record the gripper state based on finger distance and
include tactile force from the glove at each timestep.

For the environment, sparse object keypoints are annotated
once and propagated across demonstrations using DIFT [13],
then tracked over time with Co-Tracker [6]. These keypoints
are triangulated into 3D points. At inference, DIFT initializes
the points, and Co-Tracker updates them during execution.

Policy Learning We use a transformer policy [4, 3] that
takes as input robot and object keypoints, gripper state, and
force value. These inputs are tokenized via MLP encoders
and fed into the transformer, which predicts future robot
keypoints, gripper actions, and contact forces. To ensure tem-
poral smoothness, we apply action chunking with exponential
averaging [17, 2]. The policy is trained with mean squared
error on predicted trajectories.

Inference At each timestep, the model predicts 3D robot
keypoints, from which we recover the end-effector pose using
rigid-body geometry. It also outputs the desired contact force
and gripper state. If the gripper should close, a PD controller
adjusts the closure until the measured force matches the target.
Otherwise, the gripper opens directly. The robot then executes
the predicted motion, and object keypoints are updated with
Co-Tracker.

III. EXPERIMENTS

Task Descriptions We evaluate FTF on five real-world
force-sensitive manipulation tasks involving fragile and de-
formable objects, with 30 human and 30 teleoperated demon-
strations per task. Our manipulation tasks involve variations

designed to evaluate the scope of force-sensitive manipulation
capabilities achievable with FTF (details see Appendix V-B).

FTF outperforms baselines on tasks requiring delicate
manipulation. As shown in Table I, it is the only method
that reliably isolates a single cup during unstacking and
avoids over-gripping in bottle cap removal. Binary grippers
apply excessive force, while continuous grippers suffer from
instability due to imprecise finger-to-gripper mapping.

FTF also outperforms teleoperation baselines that use
force data passively. As shown in Table II, it achieves
higher success rates than both binary and continuous grip-
per strategies trained on teleoperated data, demonstrating the
benefits of explicit force prediction. However, in tasks like
place egg in pot and twist and lift bottle
cap, noisy force signals from teleoperation reduce perfor-
mance, and the method fails to outperform the binary baseline.
Continuous grippers struggle with deformable objects due to
sample inefficiency and varying force requirements across
executions.

IV. CONCLUSION AND LIMITATIONS

We present FTF, a novel framework for learning force-
sensitive manipulation from human tactile demonstrations.
By leveraging a tactile glove and vision-based hand pose
estimation, FTF captures rich contact force signals from
natural human interactions without relying on teleoperation or
robot-collected data. Our system trains a closed-loop policy
to predict hand trajectories and desired contact forces, which
are then retargeted to a robot using a PD controller that
enables precise and robust force control. Through experiments
across diverse manipulation tasks, we demonstrate that FTF
significantly outperforms prior baselines and and remains
robust under perturbations. These results highlight the power
of modeling human tactile behavior. Existing limitations of
FTF include: 1) FTF aggregates shear and normal forces,
losing directional detail; future work could separate and sta-
bilize force components for more dexterous tasks. 2) data
collection currently relies on fixed, calibrated cameras. Using
egocentric views and stereo triangulation may enable in-the-
wild deployment.
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V. APPENDIX

A. FTF
Sensor Norm to Force (Newton) conversion In order to

demonstrate a transform between the sensor norm and applied
force, we collect data by pressing on an AnySkin sensor
mounted on a weighing scale and record synchronous data
from both the sensor and the scale streamed through USB at
10Hz. We press the sensor in 5 different manners gradually
increasing the force from 0 to 5N, in order to capture different
pressures and diverse modes of contact. The sensor norm to
applied force comparison is illustrated in Figure 2.
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(a) Transformation between the
sensor norm and applied force,
for various modes of con-
tact, ranging from low-pressure
(Palm) to high pressure (Index
Fingertip)

(b) Different modes of contact
for data collection; Two fingers
laid flat (top left), index fin-
gertip (bottom left), palm (mid-
dle), one finger laid flat (top
right) and two fingers pressing
at an angle to emulate a com-
bination of both normal and
shear forces

Fig. 2: (Left) Mapping between sensor norm and applied force
across various contact modes. (Right) Data collection setup
illustrating different types of contact used in the mapping
process.

Fig. 3: FTF allows zero-shot transfer of tactile human demon-
strations to a Franka Robot.

Embodiment Agnostic Scene Representation The human
hand motion data from tactile gloves is converted into a point-
based representation to enable robot policy learning from
human demonstrations.

1) Human-to-Robot Embodiment Transfer: For each time
step t of a human video, we use Mediapipe [10] to ex-
tract image key points pth on the human hand. Using point
triangulation, the corresponding hand key points from two
fixed, calibrated camera views are projected to 3D hand key
points Pt

h. We use point triangulation for 3D projection due
to its higher accuracy as compared to sensor depth from

the camera [3]. The robot position Rt
pos is computed as the

midpoint between the tips of the index finger and thumb in
Pt
h. The robot orientation Rt

ori is computed as

∆Rt
ori = T (P0

h,Pt
h)

Rt
ori = ∆Rt

ori · R0
ori

(1)

where T computes the rigid transform between hand key
points on the first frame of the video, P0

h, and Pt
h. The robot

end effector pose is then represented at T t
r ← {Rt

pos,Rt
ori}.

Finally, the robot pose T t
r is converted to N robot key points

through a set of N rigid transformations T about the computed
robot pose such that

(Pt
r)

i = T t
r · T i, ∀i ∈ {1, ..., N} (2)

The robot’s gripper state Rg is considered closed when
the distance between the tip of the index finger and thumb
is less than 7cm, otherwise open. The continuous force value
measured for each step, Rt

f , is also included in the robot state.
This process has been illustrated in Figure 3.

2) Scene Key Point Representation: The environment is
represented as key points through sparse human annotations,
following prior work [8, 3]. Given a single demonstration
frame, a human user annotates semantically meaningful key
points on task-relevant objects in the scene. Using DIFT [13],
an off-the-shelf semantic correspondence model, the annota-
tions are propagated to the first frames of all other demon-
strations, minimizing human effort. For each demonstration,
Co-Tracker [6], an off-the-shelf point tracker, then tracks
the initialized key point through each trajectory, efficiently
handling occlusions and maintaining temporal consistency.
To obtain 3D object key points, we triangulate the tracked
key points from the two camera views, grounding them in
the robot’s base frame. During inference, DIFT is used to
localize keypoints in the first frame, after which Co-Tracker
tracks them during execution. This approach leverages large
pre-trained vision models to generalize across novel object
instances and scenes without additional training, requiring only
a single frame of user input per task.

Policy Learning For policy learning, we use a transformer
policy architecture [4, 3] that takes as input the robot points
Pr and object points Po along with the binarized gripper state
Rg and continuous force value Rf . Since the gripper state
and force value are 1D and the points are 3D, we repeat the
value 3 times when appending to the point tracks to ensure
dimensional consistency. A history of observations for each
key point is flattened into a single vector and encoded using
a multilayer perceptron (MLP) encoder. Each encoded point
track and the history of gripper and force values are fed as
a separate token into the transformer policy, which predicts
the future tracks for each robot point P̂r, the robot gripper
state Ĝr, and future gripper force predictions F̂r. using a
deterministic action head. Following prior works in policy
learning [17, 2], we use action chunking with exponential
temporal averaging to ensure temporal smoothness of the
predicted point tracks. The policy is trained using a mean



squared error loss. The transformer is non-causal in this
scenario, and the training loss is only applied to the robot
point tracks.

Inference Algorithm 1: FORCEFEEDBACKGRIPPERCON-

TROL(F̂t)

Algorithm 1
1: Initialize τ ← 0
2: repeat
3: ∆gτt = k · (F̂t − F τ

t )
4: gτ+1

t = gτt +∆gτt
5: Execute gripper action gτ+1

t

6: Read F τ+1
t from AnySkin

7: τ ← τ + 1
8: until ||F̂t − F τ

t || ≤ ϵ

a) Robot pose from predicted key points: The predicted
robot points P̂r are mapped back to the robot pose using
constraints from rigid-body geometry. We first consider the
key point corresponding to the robot’s wrist P̂wrist

r as the
robot position R̂pos. The robot orientation R̂ori is computed
using Eq. 1 considering R0

ori is fixed and known. Finally, the
robot pose R̂pose is defined as (R̂pos, R̂ori).

Algorithm 2 FTF Policy Inference

1: Obtain object keypoints on first frame using DiFT on
annotated dataset frame.

2: for t in rollout do
3: Compute action chunk (ˆ̃at, ..., ˆ̃at+H) = π(a|st) and

obtain ât with temporal aggregation.
4: Parse action: (F̂t, ĝt, â

eef
t )← ât

5: if ĝt > closethreshold then
6: Call FORCEFEEDBACKGRIPPERCONTROL(F̂t)
7: else if ĝt < openthreshold then
8: Open gripper
9: end if

10: Execute âeeft on robot
11: Read next state st+1 using Co-Tracker
12: end for

b) Inference-time PD force controller: To deploy the
tactile policy on the robot arm, we need a means for the robot
gripper exerting the force predicted by the policy at each step.
For this, we design an outer-loop PD controller that adjusts
the target gripper closure setpoints to stabilize the measured
forces. If at some timestep t, the policy predicts a force F̂t to
be applied, the controller is:

∆gτt = k · (F̂t − F τ
t ) (3)

where τ is the inner loop timestep of the PD controller and F τ
t

is the force read by the robot at timestep t of the policy and
timestep τ of the controller. At each step the gripper closure
is updated as gτ+1

t = gτt +∆gτt .

The PD controller runs until the convergence condition
||F̂t − F τ

t || < ϵ. After the controller converges to the desired
F̂t, the policy predicts the next action for step t+ 1. We find
k = 0.001 and ϵ = 5 to work well across all tasks. Finally,
the action Âr = (R̂pose, Ĝr, gt) is executed on the robot using
end-effector position control at a 6Hz frequency.

B. Experiments

Fig. 4: Visual comparison of tactile human demonstrations
(left) and force-sensitive robot manipulation rollouts (right)
learned from the human demonstrations.

Experimental Setup We evaluate FTF on a Franka Panda
robot, operating in a real-world tabletop manipulation environ-
ment. Two Intel RealSense D435 cameras are mounted to pro-
vide third-person RGB images to our policy. For baselines we
also collect 30 demonstrations on the Franka robot per task us-
ing a VR-based teleoperation framework [5]. Demonstrations
are recorded at 20Hz and subsampled to approximately 6Hz.
For methods outputting robot actions, we use absolute actions
with orientation represented with a 6D rotation representation
[18].

Task descriptions

• Place soft bread on plate: Pick and place a de-
formable bread slice without crushing it.

• Unstack single plastic cup from stack: Iso-
late and lift a single plastic cup from a stack.

• Place egg in pot: Delicately place an egg into a pot
without breakage.

• Place bag of chips on plate: Move a transpar-
ent chip bag while preserving its contents.

• Twist and lift bottle cap: Twist and remove a
cap without disturbing the bottle.



(a) Point track baselines from human data with
passive use of force. (a) uses a binary gripper
action space by thresholding human hand closure
and (b) retargets continuous human hand closure to
continuous gripper.

(b) Action imitation baselines from robot data with
passive use of force. (c) uses a binary gripper action
space and (d) uses continuous gripper action space.

Fig. 5: Comparison of gripper action space across human (left)
and robot (right) baselines under passive force conditions.

Baselines We compare FTF with 5 baselines - Tactile Point
Policy [3], Continuous-Gripper Tactile Point Policy, FTF +
Tactile P3-PO [8], Tactile P3-PO, and Continuous-Gripper
Tactile P3-PO. We describe each method below. We compare
FTF with 5 baselines - Tactile Point Policy [3], Continuous-
Gripper Tactile Point Policy, FTF + Tactile P3-PO [8], Tactile
P3-PO, and Continuous-Gripper Tactile P3-PO. We describe
each method below.
a) Tactile Point Policy [3] performs behavior cloning from
point tracks extracted from human data as well as force
readings from the tactile glove and predicts future tracks which
are converted into robot actions. This baseline provides a
comparison to methods such as [11] that use force input to
improve the precision of learned policies but in the context of
human data.
(b) Continuous-Gripper Tactile Point Policy is similar to
Tactile Point Policy but predicts continuous gripper closure.
The gripper closure value is measured as the distance between
the index and thumb tracked points from the human data re-
normalized to the range of the robot gripper.
(c) FTF + Tactile P3-PO extends Tactile P3-PO by predicting
both robot actions and future contact forces. The model is
trained on teleoperated robot data, using force signals col-
lected during teleoperation as input, and outputs predicted
forces alongside actions. This baseline evaluates whether in-
corporating force prediction improves control performance in
robot teleoperation setting and compares the utility of robot-
collected versus human-collected force data.
(d) Tactile P3-PO [8] predicts teleoperated robot actions
from robot tracks obtained by unprojecting robot and object
points of interst into 3D space. The method also inputs force
readings from the robot gripper collected during teleoperation
into the Transformer policy. This method provides a similar

comparison to Tactile Point Policy but on teleoperated robot
data and ground truth robot actions.
(e) Continuous-Gripper Tactile P3-PO is similar to Tactile P3-
PO but predicts continuous gripper closure. The continuous
gripper values are obtained directly from the robot gripper
during teleoperator using an adaptation to the VR-based tele-
operation framework [5] that allows the teleoperator to output
continuous gripper closures based on visual feedback during
data collection.

TABLE III: FTF performance under test-time disturbance

Task FTF

Place bag of chips on plate 10/15

FTF is robust to test-time disturbances. In the placing a
bag of chips on a plate task, we introduce disturbances such as
holding the bag down or pressing during lift. Despite changes
in force profiles, FTF adapts and maintains a 67% success
rate (Table III).

TABLE IV: Performance comparison of masked vs umasked
force tracks inputted to FTF

Task Masked Force Unmasked Force

Lift and hold bread 10/10 10/10

FTF does not require force input to perform effectively.
We implemented a variant of FTF that masks the force data
fed to the Transformer, constraining the model to predict
desired forces solely based on the environment and robot
state. We evaluate FTF on a simple task Lift and hold
bread, involving picking up a soft piece of bread without
crushing it and suspending the grasp in the air in Table
IV. This modification did not result in any degradation of
force prediction or task performance, suggesting that FTF
can achieve effective force control even without explicit force
input.
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