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Fig. 1: Interactions achieved using UniTac. UniTac achieves
whole-robot touch sensing without using any tactile sensors
and empowers applications such as patting the quadruped
for canine-inspired responses or touch-based instructions for
manipulation.

I. INTRODUCTION

Commercial robots are becoming increasingly capable. We
now have bipedal/quadrupedal robots that can walk or run
in challenging environments [21, 20, 2], and robot arms that
assemble products with precision [9]. Despite the impressive
capabilities of these robots, they lack a critical aspect of animal
behavior: physical interaction through touch (Fig. 1). Consider
how a simple pat can convey trust or instruction when inter-
acting with a person or an animal [8]. This limitation is largely
due to the absence or difficulty in endowing robots with touch-
sensing capabilities.

Touch sensing is essential for a variety of tasks, including
perception of in-hand object states [13, 14, 16, 15] and pro-
vision of social support for the elderly [5]. These interactions
have been supported by installing dedicated tactile sensors,
including sensors on robot hands [11, 12], and full-body tactile
skins [4, 23]. Despite their usefulness, rigid sensors tend to
compromise the robot’s dexterity, while soft sensors are prone
to produce errors due to self-contact at joints [3]. Moreover,
the integration of tactile sensors involves high costs and
complex considerations such as calibration and communication
infrastructure [22, 6].

In this paper, we propose UniTac, a unified method to en-
able whole-robot touch sensing capabilities across different
robots without tactile sensors. Our approach is applicable to
various robot platforms and leverages data from only existing
sensors. Specifically, we use torque and position data from
joint sensors, which are readily available on most commercial
robots. Unlike model-based approaches [10, 18], which depend
on physical models and demand extensive expert tuning for
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each robot platform, our technique is entirely data-driven.
While prior data-driven methods [24, 17] depend on simulated
data - necessitating the construction of bespoke simulations
for each robot - we train a neural network on real-world joint
sensor data to directly predict contact location in real time,
thereby eliminating simulation designs and the sim-to-real gap.
Notably, our efficient data collection process requires as little
as 2.5 hours (for Spot), yet it is sufficient for robust real-world
whole-robot touch sensing.

We demonstrate potential applications of UniTac in physical
Human-Robot Interaction (pHRI) [7](Fig. 1). Our evaluation
shows that the accuracy of UniTac is enough to support many
useful sensing abilities and human-robot interactions (HRI).

In summary, our contributions are as follows:
• We present a data-driven model, UniTac, that leverages

built-in joint torque sensors to achieve live whole-body
touch sensing across various robot platforms, eliminating
the need for dedicated tactile sensors.

• UniTac demonstrates generalizability across multiple
robot instances with the same type, allowing a wider
community to use it as an off-the-shelf interface directly.

• We demonstrate potential applications in touch-based
human-robot interaction, including scenarios such as bio-
inspired quadruped choreography.

II. METHOD

Our goal is to develop a method for localizing touch on the
robot’s surface using only proprioceptive feedback. We first
randomly sample a preset number of n points on the surface
of the robot mesh and define them as the ground truth contact
locations. We collect joint data during contact at each point
multiple times by varying joint configurations, and construct
a dataset D = {d1, d2, . . . , dk} with k samples. A detailed
process for contact collection will be explained in the next
section. Each data tuple is di = (pi, qi, τi), where p ∈ R3 is
the ground truth contact location. q ∈ RDoF and τ ∈ RDoF

are the joint positions and torques, respectively. We build a
contact localization model that maps the proprioceptive signal
- joint positions and torques (q and τ ) - to the contact coordi-
nate (p), defined in the robot frame, using a neural network,
namely UniTac-Net. Contact localization can be treated as
either a classification or a regression problem [19, 17], which
differ in the output head of the neural network.

III. EXPERIMENTS

We validate the effectiveness of UniTac on two platforms
with distinct morphologies: the Spot quadruped from Boston
Dynamics and the Franka Research 3 robotic arm from Franka
Robotics.



Method Robot Acc (%) ↑ L2 (cm) ↓
Franka 53.7 14.8Classification Spot 54.9 13.7
Franka 83.5 8.0Regression Spot 86.5 7.2

TABLE I: Comparsion of model choices. We compare the
performance of our regression and classification models.

Fig. 2: Live contact localization on Spots. Top row: A human
applies touch to the robot. Middle row: The system localizes
the contact point on the robot’s mesh. Bottom row: Normalized
joint torque changes are displayed (different colors indicate
distinct joint sensors).

Our data collection process starts with sampling 104 points
on Spot and 10 points on Franka. Dense sampling on Spot
covers the whole robot except for the legs, while the sparser
sampling on Franka covers each link.

A. Quantitative Results

We use two metrics to evaluate the performance of our
model: L2 norm and accuracy. L2 norm is defined as the
Euclidean distance ||p − p̂||2 between the predicted position
p̂ and ground truth contact position p. Accuracy (Acc) is
calculated as the percentage of predictions whose Euclidean
distance from the ground truth is within a threshold ϵ of 12
cm. We compare our regression model with the classification
model (Tab. I). It suggests that avoiding discretization leads to
more precise contact localization, especially in scenarios with
noisy sensor readings.

B. Qualitative Results

On the Spot, we slide our touch horizontally along the left
side of the body and visualize the live contact localization
prediction results (Fig. 2). The results demonstrate that our
model could accurately localize rapidly changing contacts in
real time. Our real-time contact localization also generalizes to
different instances of the same robot model without additional
retraining.

IV. PHRI APPLICATIONS

Using Spot, we program primitive actions using its Chore-
ography SDK. Based on the predictions from UniTac-Net, we
segment the robot’s body into distinct regions, each triggering
a specific action (Fig. 3). We divide Spot actions into three
categories: 1) Motion actions; 2) Posture change; and 3) Body
expression. All motion actions are inspired by human-equine

Fig. 3: pHRI deployment on Spot. The first row illustrates
the inspiration from human-animal interactions, showcasing
how dogs and horses respond to touch cues (colored dots).
The second row depicts the corresponding robotic responses
in deployment on Spot.

interactions [1], while posture changes and body expression
movements are derived from human-canine interactions.

Motion Actions.
• Turning on the Forehand is triggered by touching the

upper frontal section, prompting Spot to turn in the
opposite direction by stepping with its front legs while
its hind legs step in place.

• Turning on the Haunches occurs when the upper dorsal
section is touched, making Spot step sideways while
keeping its front legs stationary.

• Shifting on Forehand/Haunches results from touch on the
lower frontal or dorsal sections, causing a weight shift in
the opposite direction, mimicking a horse’s response to
abdominal pressure.

Posture Change.
• Lying Down is triggered by touching the middle section,

causing Spot to fully lower itself.
• Sitting occurs when the rear section near the hip is

touched, prompting Spot to lower its hindquarters, similar
to a dog sitting when patted on the hip.

Body Expression.
• Wiggle occurs when the arm is touched, causing Spot to

sway its body, similar to a puppy reacting to a pat on the
neck.

• Play Bow is triggered by touch near the gripper, making
Spot sway while opening its gripper, mimicking a dog
playfully bowing to welcome a friendly pat.

V. CONCLUSION

We present UniTac, a whole-robot touch sensing method
that uses only built-in joint sensors to localize contact in
real time. Our pHRI demonstrations—such as quadruped
choreography—highlight the practical benefits of our approach
for natural human-robot interactions. UniTac offers a ro-
bust, easy-to-deploy alternative to dedicated tactile hardware,
paving the way for more natural human-robot interactions. In
our future work, we aim to scale up data collection to support
more robust and multi-contact predictions.



REFERENCES

[1] Chapter 6 - Communication. In Paul McGreevy, edi-
tor, Equine Behavior, pages 151–163. W.B. Saunders,
Oxford, January 2004. ISBN 978-0-7020-2634-8. doi:
10.1016/B978-0-7020-2634-8.50011-3.

[2] Ananye Agarwal, Ashish Kumar, Jitendra Malik, and
Deepak Pathak. Legged Locomotion in Challenging
Terrains using Egocentric Vision, 2022.

[3] Brenna D. Argall and Aude G. Billard. A survey
of Tactile Human–Robot Interactions. Robotics and
Autonomous Systems, 58(10):1159–1176, October 2010.
ISSN 0921-8890.

[4] Raunaq Bhirangi, Venkatesh Pattabiraman, Enes Er-
ciyes, Yifeng Cao, Tess Hellebrekers, and Lerrel Pinto.
AnySkin: Plug-and-play Skin Sensing for Robotic Touch,
September 2024. arXiv:2409.08276 [cs].

[5] Alexis E. Block, Sammy Christen, Roger Gassert, Otmar
Hilliges, and Katherine J. Kuchenbecker. The Six Hug
Commandments: Design and Evaluation of a Human-
Sized Hugging Robot with Visual and Haptic Perception.
In Proceedings of the 2021 ACM/IEEE International
Conference on Human-Robot Interaction, pages 380–
388, Boulder CO USA, March 2021. ACM. ISBN 978-
1-4503-8289-2.

[6] Ravinder S. Dahiya, Giorgio Metta, Maurizio Valle,
and Giulio Sandini. Tactile Sensing—From Humans to
Humanoids. IEEE Transactions on Robotics, 26(1):1–20,
2010. doi: 10.1109/TRO.2009.2033627.

[7] Agostino De Santis, Bruno Siciliano, Alessandro
De Luca, and Antonio Bicchi. An atlas of physical hu-
man–robot interaction. Mechanism and Machine Theory,
43(3):253–270, March 2008. ISSN 0094-114X. doi:
10.1016/j.mechmachtheory.2007.03.003.

[8] Alberto Gallace and Charles Spence. The science of
interpersonal touch: an overview. Neuroscience & Biobe-
havioral Reviews, 34(2):246–259, 2010.

[9] Sami Haddadin, Sven Parusel, Lars Johannsmeier,
Saskia Golz, Simon Gabl, Florian Walch, Mohamadreza
Sabaghian, Christoph Jähne, Lukas Hausperger, and Si-
mon Haddadin. The Franka Emika Robot: A Reference
Platform for Robotics Research and Education. IEEE
Robotics Automation Magazine, 29(2):46–64, 2022. doi:
10.1109/MRA.2021.3138382.

[10] Maged Iskandar, Alin Albu-Schäffer, and Alexander Di-
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