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Fig. 1. ProTac. A vision-based proximity-tactile sensing technology with
soft skin capable of controllable transparency.

I. INTRODUCTION

Compared with traditional rigid robots, soft skin-based
robots equipped with multi-modal sensing capabilities offer
significant benefits for enhanced human-robot interaction sce-
narios, such as ensuring safety while providing affectionate
and comfortable haptic sensations to humans [1], [2]. Robotic
touch offers rich information about physical human-machine
interaction. Furthermore, proximity perception could enhance
the robot’s functionalities by bridging the perception gaps
between vision and tactile modalities [3]. Proximity sensing,
utilizing various transduction principles (e.g., resistance, ca-
pacitance, Time-of-Flight), is often integrated and built with
rigid electrical components [4]–[8]. Thus, the simultaneous
integration of multi-modal sensing, such as tactile and prox-
imity modalities, into soft artificial skins in an efficient and
scalable manner remains challenging due to inherent compati-
bility issues between soft materials and conventional electronic
devices. Recently, vision-based tactile sensors have emerged
as an efficient approach to enable an artificial sense of touch
by tracking the deformation of soft membranes through visual
cues of markers and reflective materials [9]–[15]. With this
in mind, this study develops a novel soft sensing technology
with intrinsic tactile and proximity sensing, relying on soft
functional skin and vision techniques [16]. We demonstrate
this sensing technology for a soft robotic link featuring the
tactile-proximity sensing capability. In this study, perceptions
for the tactile and proximity modes are enabled through a
sim2real learning-based technique and a monocular depth
estimation model, respectively.
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Fig. 2. Sim2real learning framework for tactile mode of the ProTac link.
(a) A simulation pipeline, comprised of physics engines SOFA and Gazebo;
was constructed to collect a labeled simulation dataset to train the TacNet
model, including the information of tactile skin deformation (output) and
virtual images (input); and a scheme of sim2real transfer learning was done
through a generative network (R2S-GN) of real images into simulation ones.

II. METHODOLOGY

A. ProTac basic working principle

Figure 1 illustrates the design concept of the soft robotic
link that can operate in either tactile or proximity sensing
modes (named as ProTac). This capability is enabled through
internal cameras and a soft functional skin that can actively
switch its optical properties between opaque and transparent
state. To achieve this, the skin is made of a layered structure
of a soft transparent silicon layer, a polymer-dispersed liquid
crystal (PDLC) film, and reflective markers. Thus, the basic
working principle of the ProTac is:

• Tactile mode: As the soft PDLC skin is the the opaque
state, the tactile/contact sensing can achieved by process-
ing tactile images capturing markers’ movements under
contacts, without external light interference.

• Proximity mode: When the PDLC skin switches to the
transparent state, the internal cameras can see through
the skin so that the proximal information of obstacles
near the skin can be inferred from see-through camera
views.

In the following, we briefly outline approaches to extract
the ProTac sensing information for each sensing modality.

B. Tactile Perception

Tactile information, including contact depth and location, is
obtained using a deep neural network (DNN) called TacNet,
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Fig. 3. Processing pipeline for proximity mode of the ProTac link. A
monocular depth estimation model is employed to extract proximal informa-
tion of obstacles near the ProTac link, utilizing see-through images captured
by ProTac’s internal camera.

which processes the marker-featured tactile images captured
by the ProTac’s internal cameras. To facilitate efficient learn-
ing of tactile information on such a large-scale skin, we
introduced a sim2real learning framework to train the TacNet
model based on synthetic/simulation datasets obtained from
simulation environments [17]. This framework utilizes the
SOFA physics engine to model complex physical interactions
of the soft skin based on finite element method (FEM) to
obtain skin deformation states, which serve as labels for the
TacNet model (see fig. 2). Additionally, Gazebo is used to
generate realistic virtual tactile images for the model inputs.
Furthermore, a generative network is employed to minimize
sim2real inaccuracy, preserving the simulation-based tactile
sensing performance.

C. Proximity Perception
This section briefly outlines an approach to estimate the

proximal distance from ProTac skin to the closest obstacle,
by processing the ProTac’s camera view when the PDLC
skin is in the transparent state. The processing pipeline is
illustrated in Figure 3. Specifically, we leverage a monocular
depth estimation model to infer the depth maps of external
environments from which the distance to nearby obstacles
can be calculated [16]. This method allows for the separate
observation of obstacles from different directions using both
of the opposing cameras, thereby broadening sensing coverage
and improving its suitability for other sensor designs.

III. RESULT

Tactile mode. The accuracy of contact depth estimated by
the TacNet is reported in Figure 4. With respect to the true
contact depth of 5mm, the result shows that the absolute esti-
mation errors averaged over the entire skin were approximately
0.7mm and 0.6mm for pure and normalized input tactile
images, respectively. Furthermore, Figure 4 demonstrates the
visualization of ProTac’s contact sensing across its large
sensing skin.

Proximity mode. Figure 5b showcases the ability of ProTac
link to recognize a handful of nearby objects (e.g., wallet, tape,
human). These objects were detected from the see-through
camera views while the ProTac skin was in the transparent
state (refer to Fig.5a). Additionally, Figure 5c presents the
accuracy of ProTac distance measurements within a range of
20mm to 100mm along the surface normal of the ProTac skin.
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Fig. 4. Tactile-mode evaluation. Estimations of contact depth exhibit a
high linear correlation with respect to the true values, which demonstrates the
effectiveness of ProTac’s contact sensing across its large sensing skin.
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Fig. 5. Proximity-mode evaluation. The results showcase the ProTac’s
ability for identifying a handful of nearby objects (b), as well as demonstrate
the accuracy of the ProTac-obstacle distance estimation (c).
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