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Fig. 1: TactAR is a low-cost and versatile teleoperation system which can provide real-time tactile / force feedback via
Augmented Reality (AR). Reactive Diffusion Policy (RDP) is a slow-fast imitation learning algorithm that can model complex
behaviors with a slow policy and achieve closed-loop control based on tactile / force feedback with a fast policy.

I. INTRODUCTION

Contact-rich manipulation tasks that appear simple to hu-
mans remain challenging for robots. Research in neuroscience
[4, 10, 11] shows that human manipulation involves both
predictive action and closed-loop fine-tuning. While recent
visual imitation learning [2, 19] methods have shown promise
through action chunking, they operate in open-loop during
chunk execution, limiting their reactivity. In addition, most
approaches lack integration of fine-grained tactile feedback,
restricting them to low-precision tasks.

To address these challenges, we propose:
• TactAR: A teleoperation system providing real-time

tactile feedback through Augmented Reality (AR).
• RDP: An imitation learning algorithm that combines a

slow policy for complex trajectory modeling with a fast
policy for closed-loop tactile feedback control.

Our approach enables both complex action modeling and
quick reactive behavior within a unified framework. Exper-
iments on three challenging contact-rich tasks demonstrate
significant performance improvements over baselines, while
maintaining applicability on three different tactile / force
sensors (e.g., Gelsight Mini [8] and joint torque sensors). More
videos and analysis are available in the appendices and on
reactive-diffusion-policy.github.io.

II. TELEOPERATION SYSTEM: TACTAR
TactAR is an AR-based teleoperation system that provides

real-time tactile / force feedback for contact-rich tasks with
three key features:

• Real-time tactile feedback via AR: 3D deformation
fields are rendered and attached to the robot end-effector
in AR, providing intuitive tactile / force feedback.

• Cross-sensor compatibility: TactAR supports multiple
tactile / force sensors (GelSight Mini [8], MCTac [16],
and joint torque sensors).

• Low-cost: Requires only a consumer-level Meta Quest 3
headset ($500).

Please see Appendix I and our website for more details.

III. LEARNING ALGORITHM: RDP
We introduce Reactive Diffusion Policy (RDP), a slow-fast

imitation learning algorithm that responds instantly to feed-
back while maintaining powerful action modeling capabilities.
Please see Appendix II for more details.

A. Tactile / Force Representation

For optical tactile sensors, we extract a low-dimensional
representation from the 2D deformation field matrix using
principal component analysis (PCA). For force sensors, we
directly use the 6D wrench vector.

https://reactive-diffusion-policy.github.io/
https://reactive-diffusion-policy.github.io/


TABLE I: Score for Peeling

No Perturb. Perturb. All
Perturb. before Contact after Contact

DP 0.56 0.58 0.19 0.44
DP w. tactile img. 0.60 0.49 0.16 0.41
DP w. tactile emb. 0.48 0.55 0.15 0.39

RDP (GelSight) 0.98 0.93 0.80 0.90
RDP (MCTac) 1.00 0.84 0.79 0.88
RDP (Force) 0.99 0.98 0.88 0.95

B. Slow-Fast Policy Learning

Previous action chunking approaches operate in open-loop
during chunk execution, preventing real-time feedback incor-
poration. To overcome this limitation, we propose a hierarchi-
cal framework with two key components:

1) Fast Policy: The Asymmetric Tokenizer (AT) consists
of a 1D-CNN encoder E and a GRU decoder D . The encoder
downsamples action chunks to latent space: Z = E (A). The
decoder reconstructs actions using both latent vectors Z and
tactile feedback Freduced : Â = D(concat([Z,Freduced])).
This asymmetric design ensures latent chunks contain high-
level strategies while precise actions are predicted with tactile
information. The AT is trained with:

LAT = E(A,Freduced)∈Dpolicy

[
∥A− Â∥1 + λKLLKL

]
(1)

Importantly, the fast policy achieves sub-millisecond inference
time, enabling high-frequency control.

2) Slow Policy: The Latent Diffusion Policy (LDP) oper-
ates on latent action chunks using a diffusion model frame-
work. This approach reduces computational costs while keep-
ing the powerful capability of modeling complex actions
according to visual inputs. The training objective is:

LLDP = E(O,A0)∈Dpolicy,k,ϵk∥ϵ
k − ϵθ(O,Z0 + ϵk, k)∥2 (2)

IV. EXPERIMENTS

Please see Appendix III for more details.

A. Tasks and Evaluation

We evaluate on three challenging contact-rich tasks:
• Peeling: Requires precision and fast response to pertur-

bations
• Wiping: Requires adaptive force control with rotation and

fast response
• Bimanual Lifting: Requires precise force control and

bimanual coordination
We conduct experiments with three sensors: GelSight Mini
[8], MCTac [16], and joint torque sensors of Flexiv Rizon 4
arms [7]. See Appendix III.1.2 for the evaluation protocol.

B. Results and Analysis

Tactile integration approach matters. Simply adding
tactile signals to observations does not necessarily improve
performance. As shown in Table I, whether using raw tactile
images or using tactile embeddings in standard Diffusion
Policy (DP) performs similarly to visual-only approaches. This

TABLE II: Score for Wiping

No Perturb. Perturb. All
Perturb. before Contact after Contact

DP 0.75 0.70 0.25 0.57
DP w. tactile emb. 0.60 0.75 0.15 0.50

RDP (GelSight) 0.85 0.95 0.50 0.77
RDP (Force) 0.95 0.85 0.80 0.87

TABLE III: Success Rate and Score for Bimanual Lifting

Soft Paper Cup Hard Paper Cup All

Clamp Lift Score Clamp Lift Score Score

DP 0% 0% 0.00 0% 0% 0.00 0.00
DP w. tactile emb. 10% 10% 0.10 20% 10% 0.05 0.08

RDP (GelSight + MCTac) 100% 100% 0.55 90% 80% 0.40 0.48
RDP (Force) 100% 90% 0.80 90% 90% 0.60 0.70

suggests that effective tactile integration requires architectural
changes beyond simply adding inputs.

RDP significantly outperforms baselines. As shown in
Tab. I, Tab. II and Tab. III, RDP improves the overall score
by a large margin (> 35%) compared to various Diffusion
Policy baselines in all three tasks. These tasks require differ-
ent capabilities, including precision (Peeling), adaptive force
control with rotation (Wiping) and precise force control with
bimanual coordination (Bimanual Lifting). We believe these
capabilities are highly related to closed-loop adjustments with
high-frequency tactile / force feedback.

Cross-sensor applicability. RDP performs well with differ-
ent tactile / force sensors despite their varying characteristics.
Performance with GelSight Mini and MCTac is comparable
(0.90 vs 0.88 on Peeling), and RDP can even utilize different
sensors simultaneously in bimanual tasks. Force sensor-based
RDP consistently achieves the best results, possibly due to
lower latency and dimensionality.

Fast reactivity to perturbations. RDP shows superior
performance under perturbations, especially after contact is
established. In the Peeling task, RDP achieves 0.80 score under
post-contact perturbations compared to 0.15 for DP with tactile
embedding. This shows the effectiveness of the fast policy in
providing immediate corrections based on tactile feedback.

Tactile / force feedback in TactAR improves data quality.
We conducted a user study with 10 participants of diverse
VR teleoperation / IL experience to investigate tactile / force
feedback in TactAR helps the data collection. Users experi-
enced the VR teleoperation and TactAR in a randomized order.
Results show that most of the users (≥ 70%) found that tactile
/ force AR feedback is very helpful in data collection. We also
find that tactile / force feedback can greatly improve the data
quality from both the normalized peeling length (0.72 → 0.91)
and the ratio of stable contact force (0.58 → 0.87).

V. CONCLUSION
In this paper, we present TactAR and RDP to collect

high-quality data and learn reactive policy for contact-rich
manipulation. RDP addresses the trade-off between sequence
modeling and closed-loop control through its slow-fast design
and outperforms SOTA visual IL baselines in experiments. We
believe that this work takes an important step toward making
visual-tactile IL more practical and accessible.
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APPENDIX I FEATURES OF TACTAR

A. 3D Deformation Field Extraction

The gel surface’s marker array (Fig. 3) captures rich contact
information, but deriving forces from 2D optical flow requires
complex calibration with expensive sensors. To improve acces-
sibility, we instead visualize the 3D deformation field. From
tactile images It, we extract normalized marker positions Dt

using OpenCV [14]. We use a score-based tracking algorithm
[9] to calculate 2D optical flow between the initial frame D0

and the current frame Dt:

Ft = [dx,dy] = Flow(D0, Dt) (3)

The 3D deformation field Vt = [dx,dy,oz] (with z-offset
oz) is then rendered in AR. For force sensors, we directly
visualize Vt = [fx, fy, fz].

B. Real-time Tactile / Force Feedback Rendering in AR

The Meta Quest 3 VR headset has a native refresh rate
of 90Hz, and it has a bulit-in SLAM algorithm for pose
estimation of the headset and controllers. Before teleoperation,
we first align the AR coordinate system in Quest3 with
the real-world robot coordinate system by a simple camera
calibration process described in Fig. 4.

Our system can achieve low-latency feedback for tactile
observation. Typically, the latency of the marker flow tracking
algorithm is about 10ms. The latency for the force sensor
is less than 1ms. The rendering latency in Quest 3 is about
10ms. And the network latency is about 1-6ms depending on
the network condition. Optionally, our TactAR system also
supports real-time streaming of multi-view RGB cameras (see
in Fig. 2) and tactile cameras for more immersive teleoperation
experience.

APPENDIX II COMPONENTS OF RDP

A. Slow-Fast Policy Learning

As shown in Fig. 6, temporal ensembling finds a balance
between closed-loop control and sequence consistency by
aggregating the predictions of multiple iterations for the same
timestep. A significant drawback of this solution is that it
diminishes the policy’s ability to model multi-modal distri-
butions and non-Markovian actions, making it prone to issues
such as getting stuck. To break the above trade-off between
sequence modeling and closed-loop control, we propose a
slow-fast policy learning framework Reactive Diffusion Policy
(RDP) as in Fig. 5.

1) Fast Policy: We choose to use a CNN-based encoder to
preserve the spatial structure of the raw sequence, enabling
the latent action chunk to be better processed by the latent
diffusion policy, which takes sequences as input. It is also
worth noting that we utilize tactile representation solely as
input in the decoder. This deliberate asymmetry in structure
is designed to ensure that the latent action chunk retains only
high-level feedback strategies, while the precise locations are
predicted by the decoder with the tactile information. During
training, we keep the coefficient λKL small as in LDM [17]

because we want to smooth the latent space of the AT rather
than turning it into a generative model. As shown in Tab.
IV, our fast policy only takes less than 1ms for inference,
which can even support higher-frequency inputs (> 300Hz)
theoretically.

2) Slow Policy: We model the slow policy as a Diffusion
Policy [2] operating on latent action chunks, which is called
Latent Diffusion Policy (LDP). Diffusion Policy is a generative
model that iteratively denoises the noisy action Ak to a clean
one Â0 through Stochastic Langevin Dynamics [18] with the
learned gradient field ∇E(A). To transform the model to
latent space, we use the latent action chunk Z0 = E (A0). This
modeling method offers several advantages. On the one hand,
the downsampled latent representation reduces computational
costs. More importantly, the asymmetric design in the AT
allows challenging reactive behaviors to be excluded from
latent action chunks, thereby reducing the learning difficulty
of latent diffusion policy under low-frequency observation
and enhancing its generalization capabilities. During training,
given the observation O (including image, tactility and propri-
oception), the gradient field is learned by a network ϵθ. We use
CNN-base Diffusion Policy with FiLM-based [15] condition
injection as the network architecture.

TABLE IV: Inference Time of Different Modules

Diffusion Policy Slow Policy (LDP) Fast Policy (AT)

120ms 100ms < 1ms

3) Implementing Suggestions for Slow-Fast Policy: Com-
pared to the standard Diffusion Policy [2], our slow-fast
control policy requires certain key design elements to achieve
optimal performance.

• Relative trajectory. We use relative end-effector (EE)
trajectory for action representation and proprioception,
which has been proven to be effective even in complex
tasks by UMI [3].

• Latency matching. This method has been mentioned in
UMI [3] and is even more crucial for our slow-fast policy.
It ensures smoother transitions between action chunks,
preventing out-of-distribution tactile signals from causing
the fast policy to predict abnormal actions.

APPENDIX III EXPERIMENTS

A. Setup
1) Hardware: The experimental platform consists of two

Flexiv Rizon 4 [7] robotic arms with joint torque sensors
and two Flexiv Grav [5] grippers. For single-arm tasks, we
only use one Realsense D435 camera on the robot arm for the
wrist view. For the bimanual task, we use two Realsense D435
cameras for wrist views and a fixed Realsense D415 camera in
front of the robot workspace for external view. We use three
different tactile / force sensors for experiments:

• GelSight Mini [8] (Robotics Package) optical tactile
sensor with 8MP resolution at 25 FPS, and it has a 7×9
marker dot array on the surface.
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Fig. 2: Overview of TactAR teleoperation system. It can provide real-time tactile / force feedback via Augmented Reality
(AR). The tactile feedback is represented as the 3D deformation field, which is a universal representation applicable to multiple
different tactile / force sensors. The 3D deformation field is rendered and ”attached” to the robot end-effector in AR, which
makes the user perceive the rich contact information in 3D space. TactAR also support real-time streaming for multiple RGB
cameras and optical tactile sensors. Please see the video in the supplementary file for more details.

Normal Force Tangential Force Torsional Torque

Fig. 3: Examples of marker deformation field in GelSight Mini
[8] during different contact modes.

Target position

Before calibration

After calibration

Fig. 4: Calibration process in AR. The user adjust the transla-
tion and rotation of the virtual coordinate system such that it
can align with the pre-defined TCP position (the white sphere)
and the origin of the world coordinate system.

• MCTac [16] optical tactile sensor with 2MP resolution
at 30 FPS, and it has a 5 × 7 marker dot array on the
surface. To acquire a stable and sensitive tactile signal,
we have improved the camera-based tactile sensor based
on the open source MCTac [13, 16], details are shown in
Fig. 7.

• Built-in joint torque sensors in Flexiv Rizon 4 [7]
robotic arm. We use the estimated TCP force/torque

calculated by Flexiv RDK [6] for experiments. We stream
the sensor data at 120Hz and downsample it to 24
FPS. Note that the estimated TCP force / torque signals
have relatively larger noise compared to the force sen-
sor mounted on the robot end effector (e.g., ATI mini
45[1]) due to inaccurate dynamics model, which further
challenges the learning algorithm.

In order to evaluate policy performance under different tactile
/ force sensors, we attach MCTac and GelSight Mini to
different fingertips of the same gripper. In this way, we can
collect synchronized data from MCTac, GelSight Mini and
force/torque sensors simultaneously. The TactAR teleoperation
uses a Meta Quest 3 VR headset. All devices are connected
to a workstation with an Intel Core i9-14900K CPU and
an NVIDIA RTX 4090 GPU for both data collection and
evaluation.

2) Baselines: We use the following baselines for compari-
son:

• Diffusion Policy: vanilla implementation of Diffusion
Policy [2] with only visual input (RGB images) and open-
loop action chunking.

• Diffusion Policy (tactile image): Diffusion Policy with
raw tactile images and visual input.

• Diffusion Policy (tactile embedding) Diffusion Policy
with tactile embeddings (PCA feature) and visual input.

• Reactive Diffusion Policy (tactile embedding) (Ours):
our slow-fast policy with high-frequency tactile embed-
ding (PCA feature) and visual input.

• Reactive Diffusion Policy (force) (Ours): our slow-
fast policy with high-frequency wrench (force/torque) and
visual input.

We use similar initial states across all methods for both the
robots and the objects, by manually aligning the scene with
the pre-defined images. There are three test-time variations for
Peeling and Wiping tasks: (a) No perturbation. The object is
fixed with a random 6D pose in the air. (b) Perturbation before
contact. The human evaluator will move the object right before
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Fig. 5: Overview of Reactive Diffusion Policy (RDP) framework. (a) The training pipeline of RDP, comprising the first stage
for training the fast policy (Asymmetric Tokenizer) and the second stage for training the slow policy (Latent Diffusion Policy).
(b) The inference pipeline of RDP. The slow policy leverages low-frequency observations for modeling complex behaviors
with diffusion and action chunking. The fast policy enables closed-loop control by using high-frequency tactile / force input
and fine-tuning the latent action chunk predicted by the slow policy in an auto-regressive manner.

the tool makes contact. (c) Perturbation after contact. The
human evaluator will move the object after the tool makes
contact to break the contact state. There are two test-time
variations for Bimanual Lifting task: (a) soft paper cup. (b)
hard paper cup. We run 10 trials for each test-time variation.

For Peeling task, we calculate the score based on the
proportion of the peeled cucumber skin to the total length
of the cucumber, normalized by the average score of the
demonstration data. For Wiping task, we calculate the score
based on the size of the remaining handwriting compared
to the demonstration data. If the residue reaches the human
demonstration level, the score is 1; If there is minor residue
(less than one third of the handwriting length), the score is 0.5;
If significant residue remains, the score is 0. For Bimanual
Lifting task, if the paper cup is lifted into the air following
the designated trajectory without significant compression, the
score will be 1; If the paper cup is partially compressed in
the air, the score will be 0.5; If the cup is not lifted up, or
dropped in the air, the score will be 0.

3) Details of the Data Collection Process: For three tasks
used in our experiments, we collect 60 demonstrations for
Peeling task, 80 demonstrations for Wiping task and 50 demon-
strations for Bimanual Lifting tasks with TactAR system.
During the data collection, we proactively recorded some
reactive behaviors to enhance the robustness of the model.

4) Details of the Inference Process: We use observation
To = 2 for all Diffusion Policy baselines and our Latent

Diffusion Policy (LDP). The Diffusion Policy and our slow
policy (LDP) predict open-loop 12 FPS action sequences for
each action chunk. They will periodically (1-2Hz) predict new
inference results at time intervals determined by the action
chunk (about 0.67s in real-world time). The fast policy (AT)
takes tactile / force observations at 24 FPS and outputs action
predictions at 24 FPS. The final actions are interpolated and
sent to robots with a higher frequency (>500Hz). Note that
we use 24 FPS because we are constrained by the frame
rate limitation of GelSight [8], which is 25 FPS. Our RDP
algorithm can also be applied to higher frequency tactile /
force signals in theory.

B. Results

Slow-fast hierarchy, relative trajectory and latency
matching are essential for RDP performance. As shown
in Fig. 6, there are two ways to increase the closed-loop
control frequency without our slow-fast hierarchy: (1) reducing
action chunk size. (2) using temporal ensemble. However,
experiments in Tab. V have proved that these two options both
have significant side effects. We can see from Tab. V that when
the action chunk size is reduced from 8 to 2, the DP baseline
tends to get stuck before grasping (failure case 4 in Fig. 9
(b)), which makes the grasp success rate drop from 100% to
20%. Policy with small chunk size is very sensitive to non-
markovian behaviors (e.g., pauses in the air) commonly found
in human demonstration data, so we can not simply reduce
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Fig. 7: Improved MCTac Sensor for our task.

chunk size.
Temporal ensemble [12, 19] can perform semi-closed-loop

control by averaging predictions from multiple timesteps. We
have also tried different temporal ensemble factors τ in HATO
[12], and the experiments in Tab. V have shown that the
model performance is very sensitive to τ . When τ = 0.2,
the average weight will focus more on the newest predictions,
which makes the model behavior similar to the policy with
small chunk size and causes low grasp rate (30%). When
τ = 0.8, the average weight will focus more on the oldest
predictions, which makes the model behavior over-smoothed
and hurt reactive ability (failure case 3 in Fig. 9 (b)). Thus,
it is very hard to balance temporal consistency and reactivity
with temporal ensemble.

As shown in Fig. 11, the relative trajectory prediction per-
forms much better compared to the absolute action prediction
in Peeling Task. It may be because relative trajectory are
easier to learn for a smaller, fast policy, which brings a
more generalizable reactive strategy from tactile feedback.
In addition, the relative trajectory also compresses the latent
space, facilitating the learning process of the latent diffusion
policy. We also find that latency matching also contributes a
lot to the policy performance (see Fig. 11) by ensuring smooth
action transition between action chunks and reducing out-of-
distribution (OOD) behaviors.

TABLE V: Effects of Chunk Size and Temporal Ensemble

Wiping

action chunk temporal ensemble [12] Perturb. after Contact
size factor Grasp Score

DP w. tactile emb. 8 - 100% 0.15
2 - 20% 0.10

DP w. tactile emb.
8 τ=0.2 30% 0.05
8 τ=0.5 0% 0.00
8 τ=0.8 100% 0.15

RDP (GelSight) 8 - 100% 0.50

Tactile / force feedback in TactAR improves data quality
in contact-rich tasks by improving the stability of contact
forces. For a more detailed quantitative analysis of contact
forces, we collect data (10 demos) for Peeling task with
the same user by VR teleoperation and TactAR respectively.
The participant use these two teleoperation methods in a
randomized order. Then we calculate the Rolling Standard
Deviation of the recorded force curve with a window size of
10 steps, and the results are shown in Fig. 14. We can observe
that using TactAR to collect data helps avoid a large rolling
standard deviation, indicating reduced temporal fluctuations
and more stable contact forces.

Data with higher stability of contact forces will help
the model to discover useful patterns more easily. We
have collected the same number of demonstrations (60) for
Peeling task with traditional VR teleoperation without tactile
/ force feedback and trained RDP (force) with these data.
The results in Fig. 15 show that data quality has a large
influence on policy performance (the score decreases by
more than 30%). We observe that policies trained with low-
quality data exhibited more unstable performance, such as
more unstable force during peeling and a higher likelihood



Task1: Peeling

Init Grasp the peeler Display the resultPerturbation (Optional)Begin peelingApproach the cucumber

Init Grasp the eraser Display the resultPerturbation (Optional)Begin wiping the vaseApproach the Vase

Task2: Wiping

Init Grasp the eraser Display the resultPerturbation (Optional)Begin wiping the vaseApproach the Vase

Task3: Bimanual Lifting

Init Grasp the handler Approach target positionLift the cup (multi-modal)Clamp the cup Approach the cup

Fig. 8: Three experiment tasks including Peeling, Wiping and Bimanual Lifting.

(a) Peeling (b) Wiping (c) Bimanual Lifting

Failure Case 2 (DP w. tactile emb.): Stuck before contacting.

gap

Failure Case 1 (DP w. tactile emb.): Slow response to perturbation.

Success Case (Ours w. MCTac): Reactive action.

Failure Case 3 (DP w. tactile img.): Wrong contact point & large force.

Failure Case (DP w. tactile emb.): Get stuck before clamping the cup.

Success Case (Ours w. GelSight + MCTac): Smoothly lift to the target 

position.

Success Case (Ours w. Force): Reactive action with rotation.

Failure Case 3 (DP w. tactile emb., 𝜏 = 0.8): Oversmoothed trajectory.

Failure Case 4 (DP w. tactile emb., chunk 2): Stuck before grasping.

Failure Case 1 (DP w. tactile emb.): Slow response to perturbation.

Failure Case 2 (DP): Inaccurate trajectory & large force.

gap gap

Fig. 9: Evaluation results and failure cases of baselines. Please see the website for more details.

https://reactive-diffusion-policy.github.io/


Case Study 1: Correct minor positional errors during contact using tactile feedback.

Predicted Original Action Reactive Action

Case Study 3: Precise force control during clamping the cup.

Predicted Original Action Reactive ActionCase Study 2: Adaptive capability for tracking complex surfaces.

Fig. 10: Visualization of the RDP inference process. The red (left) and blue (right) dots can be seen as the predicted action
chunk of the slow policy. The green arrow represents the correction direction and magnitude (scaled up for better visibility)
of the reactive action predicted by the fast policy during inference. Please see the videos on the website for more details.

Absolute Action No Latency Matching Ours (RDP w. MCTac)
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Fig. 11: Ablation Study.
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Fig. 12: User study results among 10 users on teleoperation
w./w.o. tactile / force feedback in Peeling task.

of breaking halfway through. A possible explanation is that
the Fast Policy in RDP is designed to identify associations
between tactile / force signals and trajectories from the data
and learn reactive behavior. When contact forces in the data are
highly unstable, the Fast Policy struggles to identify reasonable
associations, which reduces performance.

C. Case Study and Explainability

We conduct several case studies and visualize the RDP
inference process. Please refer to Fig. 9 and Fig. 10.
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Fig. 13: Teleoperation data quality of 10 users on Peeling task
(no perturb.) w./w.o. tactile / force feedback.
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Fig. 14: The stability of contact forces with different teleop-
eration systems in Peeling task.
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Fig. 15: How data quality influences policy performance of
RDP (force) in Peeling task.

https://reactive-diffusion-policy.github.io/
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